IP Multimedia Subsystem

Nathan Bliss

Introduction

- Release 5 ->
- IMS is an IP based core network infrastructure enabling advanced service features involving rich multimedia content
- It is a move towards an all-packetswitched infrastructure

Overview

Streami

Video

3

ng

PS

Core

Chat

VoIP

- IP connectivity & service control architecture for multimedia
- Access independence
- Introduced in Rel 5

Example Services

- VoIP (including PoC/PTT)
- Multiplayer Games
- Session-based peer-to-peer services
- Session-based content services (e.g. streaming)
- Event-based services (e.g.Email)

IPv6 and IPv4

Interworking supported by 3GPP standards

QoS

□ UE can negotiate:

Media type
Bit rate
Packet size

Charging/Billing

□ Entities involved:

> GGSN
> IMS
> Application Server

Service Control Model

- Home-based service control model
- Service development model based on standardising service <u>capabilities</u>, <u>not</u> actual services

Entities in the IMS Architecture

The next few slides summarise the roles each entity plays in the IMS

Session Management & Routing

P-CSCF	Proxy Call Session Control Function
I-CSCF	Interrogating Call Session Control Function
S-CSCF	Serving Call Session Control Function

Databases

HSS	Home Subscriber Server
SLF	Subscription Locator Function

2. J. 1. 2

Services

1.5

AS	Application Server	
MRFC	Media Resource Function Controller	
MRFP	Media Resource Function Processor	

Interworking

BGCF	Breakout Gateway Control Function
MGCF	Media Gateway Control Function
IMS- MGW	IMS Media Gateway
SGW	Signalling Gateway

14

Policy Support

PDF	Policy Decision Function
SEG	Security Gateway
THIG	Topology Hiding Inter-network Gateway

Charging/Billing

OCS	Online Charging System
CDF	Charging Data Function
CGF	Charging Gateway Function
CTF	Charging Triggering Function
CRF	Charging Rule Function

P-CSCF

- First point of contact for the user of originating traffic
- Last point of contact before the user for terminating traffic
- Functions of P-CSCF:
 - Compression
 - IP Security Associations
 - Policy enforcement
 - Emergency call detection (ongoing in Rel. 7) ¹⁷

I-CSCF

- Contact point within an operator network for connections targeted to its subscribers
- Functions of I-CSCF:
 - Querying HSS for routing information
 - Assigning a S-CSCF
 - Routing incoming requests
 - THIG functionality (optional)

S-CSCF

- Handles registration
- Maintains session states
- Routing decisions
- Stores service profile
- Downloads security vectors from HSS
- Authenticates users
- Converts Tel URIs to SIP URIs when necessary

Basic CSCF Routing

4. 1. 2.

HSS

- Release 5/6 HLR
- Storage of IMS Access Parameters
- User requirements for S-CSCF capabilities
- Functionality for CS, PS & IP Multimedia

SLF

- HSS Locator
- Used in the case of multiple HSS nodes deployed within one PLMN

Application Servers

- Servers that host and execute services
 - e.g. Call Control, user interaction, etc
- Can be SIP-based
 - e.g. SIP App Servers used for PoC, streaming, etc

- 16

24

MRFC & MRFP

- Transcoding
- Mixing of media streams
- Announcements

BGCF

- This network entity is used where a SIP session is "broken out" to the Circuit-Switched domain
- Entails conversion between SIP and ISDN (ISUP) protocols
- Resulting ISUP request is then forwarded to the SGW

$VoIP \leftarrow \rightarrow ISDN$ Signalling Conversion

MGCF

SGW

CS

IMS-MGW

- Controlled by MGCF
- Implements actual plane bearer switching functionality

PDF

- Authorisation
- Admission Control
- Releases <u>Authorisation Tokens</u>
- Maps SDP parameters to a specific <u>PDP Context</u> QoS

SEG

- Secures control-plane traffic between security domains
- Mandatory security features:
 - Confidentiality
 - Data Integrity
 - Authentication

THIG

- Hides details of network beyond
- Must be placed in routing path if THIG features are desired
- Encrypts/decrypts <u>headers</u> which reveal topology information

IMS Reference Points

- The next few slides give a short summary of each of the IMS reference points
- Charging/billing is described separately

Gm Interface

Connects UE to IMS (via P-CSCF)

Gm Interface

□ Used by UE for:

- Sending of Registration Request with indication of supported security mechanisms
- Exchange of parameters enabling mutual authentication
- Negotiation of parameters for security association
- Initiation of SIP compression
- Reception of implicitly registered user identities
- Establishment of session control procedures (dialog-based) or transaction procedures (e.g. ³⁴ Message)

Mw Interface

- Links the different CSCFs together
- Also used to relay charging related

ISC Interface

- IMS Service Control
- SIP-based
- Used for service control between CSCF & AS

Cx Interface

Links I-CSCF/S-CSCF to HSS

Cx Interface

- DIAMETER protocol
- Location management
- User Data Handling
- User Authentication

The Cx Interface is described in more detail in the following slides...

Location Management

- Includes Registration/de-registration
- Includes location retrieval
- Message Sequence Chart
- Registration Termination Request (RTR/RTA) is initiated by HSS for de-registration
- Location Information Request (LIR/LIA) is used to query HSS for assigned S-CSCF for methods other than registration

User Profile Data Handling

 Push-Profile-Request (PPR/PPA) used by HSS to update S-CSCF with user profile data

Authentication

- Multimedia-Auth-Request (MAR/MAA) sent by S-CSCF to HSS
- MAA contains an <u>Authentication</u> <u>Vector</u> (Scheme, RAND, AUTN, XRES, IK, CK)

Dx Interface

- Interface between I-CSCF/S-CSCF & SLF
- Used with multiple HSS nodes deployed in one PLMN

Sh & Si Interfaces

Interface between HSS & AS

Sh Interface

Example messages:
 User-Data-Request (UDR)
 User-Data-Answer (UDA)
 Profile-Update-Request (PUR)
 Profile-Update-Answer (PUA)

- DIAMETER
- HSS contains list of ASs permitted to retrieve/store data

44

Sh Interface

Examples of data passed over Sh:

- Name of S-CSCF serving user
- Charging function addresses
- Location data

Sh Interface

Subscription/Notification:

- Allows AS to receive notifications for changes to user data stored in the HSS
- AS sends SNR (Subscribe-Notifications-Request)
- HSS acknowledges subscription with SNA
- HSS sends Push-Notification-Request (PNR) to AS to notify AS of changes (PNA acknowledges)

46

Si Interface

- Used between CAMEL AS (IM-SSF) & HSS
- Used for transport of CAMEL subscription data including triggers from HSS to IM-SSF

Dh Interface

- Interface between AS & SLF
- Introduced in Rel 6
- Used in conjunction with Sh interface
- DIAMETER

Mm Interface

 Interface between CSCFs and external IP multimedia networks

Mm Interface

- Allows I-CSCF to receive a session request from an external SIP server or SIP terminal
- Allows S-CSCF to forward requests to external multimedia IP networks

Mg Interface

- Interfaces the CS edge function (MGCF) to I-CSCF
- SIP-based

Mi Interface

- Interface between S-CSCF & BGCF
- SIP-based
- Used when S-CSCF determines that a request needs to be routed to the CS domain

52

Mj Interface

- Interface between MGCF & BGCF
- SIP-based
- If breakout to CS domain occurs in same PLMN, BGCF forwards the session to MGCF via this interface

Mk Interface

 Used by BGCF to interface with another network's BGCF for breakout to CS domain in another network

54

Mn Interface

Interface between MGCF & IMS-MGW

Mn Interface

- Based on H.248
- Controls user plane for user plane functions. e.g:
 - User bearer IP media connections
 - Invocation of echo cancellers
 - DTMF tones
 - Announcements

Ut Interface

Interface between UE & AS

Ut Interface

- Gives users HTTP access to web pages allowing them to configure profile & service options
- Standardized in Release 6

Mr Interface

- Interface between S-CSCF & MRFC
- Used to activate bearer related services such as the playing of an announcement

Mp Interface

- Allows MRFC to control MRFP
- H.248-based
- For control of media streams, such as creating connections for conference media

60

Go Interface

 Interface between GGSN & Policy Decision Function (PDF)

Go Interface

- Based on COPS (Common Open Policy Service) protocol
- Allows GGSN to implement the QoS negotiated at the IMS level by querying the Policy Decision Function
- Also used for charging correlation between IMS & PS RAB domains

Gq Interface

Interface between P-CSCF & PDF

Gq Interface

- Transports policy setup information to the PDF
- Used to also deliver:
 - Authorisation token
 - Charging IDs
 - GGSN IP addresses

IMS Registration

- Message Sequence Chart Part1

 Part2
- UE must periodically refresh its registration
- S-CSCF will implicitly de-register UE when registration timer expires
- UE sets expiry timer to zero to deregister

Implicit Registration

- 3GPP extension
- Allows a group of public user identities to be registered after <u>one</u> single explicit registration request containing <u>one</u> of the public user identities
- Same thing can apply to deregistration
- User IDs in implicit registration request⁶ can point to different service profiles

User Profile

S. A. S. S. S. S.

User of <u>SUBSCRIBE</u> to fetch Public User ID Set

68

Session Initiation

IMS Session Establishment

 This message sequence chat gives the call flow for basic IMS session establishment

User Identities: Private User Identity

- Defined by HPLMN and stored in ISIM application & HSS
- Identifies user subscription in <u>Registration Request</u>
- Sent within all registration requests and stored by S-CSCF
- <u>Cannot</u> be modified by the user
- <u>NOT</u> used for SIP message routing

User Identities: Public User Identity

- Published and available to other users
- SIP-URI or tel-URI format
- At least one PuUID stored in ISIM
- Cannot be modified by UE
- <u>Multiple</u> PuUIDs can be registered
- Identifies an ID to be registered in a Registration Request <u>and</u> used for requesting contact with other parties

71

URI Examples

 SIP-URI: sip:user@ims.com
 tel-URI: +4915151454704
Mechanism for Legacy USIMs

- Derived from IMSI
- PrUID:

<IMSI>@<MNC>.<MCC>.IMSI.3gppnetwork.org

- Temporary PuUID: sip:<IMSI>@<MNC>.<MCC>.IMSI.3gppnetwork.org
 - Used only by CSCF & HSS elements
 - Should be set to "barred"
- Implicitly registered PuUIDs used after initial registration

Public Service Identities

- Example: Used for a distribution list or conference
- Allows <u>1</u> SIP URI to identify a <u>list</u> or <u>service</u>

SIP URIs can also be used for identifying network elements. e.g: sip:voda.scscf2@ims-network.com

ISIM, USIM & UICC

Security Keys		Private User ID	
Public User ID		HPLMN Domain Name	
ISIM Access Rule Ref		Administrative Data	
	USIM		

Sharing a Single User ID Between Multiple Devices

Private User ID: PriUser1@voda.ims.com Public User ID: sip:public.user@voda.ims.com Contact: sip[4444::b:c:d:e]; media="application" Private User ID: PriUser2@voda.ims.com Public User ID: sip:public.user@voda.ims.com CContact: sip[4444::e:e:f:f]; media="video"

- Differentiation based on PrUID
- Note: IMS supports <u>sequential forking</u> & parallel forking

Proxy CSCF Discovery

There are two Standardized mechanisms specified in 3GPP: GPRS Procedure

- Data is contained in Protocol Configuration
 Options IE in PDP Context Messages
- Release 6 & later GGSNs only

DHCP/DNS Procedure

- This is an <u>access-independent</u> method

S-CSCF Assignment

- Executed when a user registers
- Executed when an <u>unregistered</u> user receives a SIP request
- Executed during fault recovery
- I-CSCF receives S-CSCF capabilities from HSS for selection:

Server-Capabilities Attrubute Value Pair (AVP) Selection algorithms are <u>not</u> standardized

Note: S-CSCF has option to <u>maintain</u> user 78 profile after de-registration for optimisation purposes

AVP Types

- Mandatory
- Optional
- Server-Name (server SIP URI)

Control of Bearer Traffic

 Interaction between IMS & GGSN known as "Session Based Local Policy" (SBLP) control

PDF (Policy Decision Function)

- Fully integrated with P-CSCF in Release 5
- Allows and Provisions QoS attributes via the PDP Context

Policy Enforcement Point (PEP)

- GGSN function
- Enforces decisions made by the PDF

SBLP Functions

Bearer Authorisation: Involves PDF mapping SDP parameters to IP **QoS** parameters Authorisation Token: Created in PDF Delivered to UE, which then includes it in a PDP **Context Activation Request** GGSN then uses this to identify authorising PDF Authorisation token & flow identifiers are inserted into TFT information element

SDP Example

```
Content-Type: application/sdp
Content-Length: ( ... )
v=0
o=- 2987933623 2987933623 IN IP6 5555::eee:fff:aaa:bbb
8=-
c=IN IP6 5555::eee:fff:aaa:bbb
t=0 0
m=video 10001 RTP/AVP 98
b=AS:75
a=curr:gos local none
a=curr:qos remote none
a=des: gos mandatory local sendrecv
a=des:gos mandatory remote sendrecv
a=inactive
a=conf:qos remote sendrecv
a=rtpmap:98 H263
a=fmtp:98 profile-level-id=0
m=audio 6544 RTP/AVP 97 96
b=AS:25.4
a=curr:qos local none
a=curr: qos remote none
a=des:gos mandatory local sendrecv
a=des:gos mandatory remote sendrecv
a=inactive
a=conf:gos remote sendrecv
a=rtpmap:97 AMR
a=fmtp:97 mode-set=0,2,5,7; maxframes=2
a=rtpmap:96 telephone-event
```

Media Grouping

- GGSN can force UE to use separate PDP contexts for different media
- SDP component called "<u>Single</u> <u>Reservation Flow</u>" (SFR) is use for this purpose
- Release 6 adds capability to charge on an IP flow basis

QoS Parameter Types

Traffic Class	Max DL rate		
Guaranteed DL rate	Max UL rate		
Guaranteed UL rate	Max SDU size		
SDU format data	BER		
SDU error ratio	Traffic-handling Priority		
Delivery of errorneous SDUs	Allocation/Retention Priority		
Transfer Delay	Delivery Order		
Source statistics descriptor	86		

Maximum Allowed UMTS Traffic Class per Media Type

UMTS Traffic Class	Media Type (m-line in SDP)		
Conversational	Bi-directional audio/video		
Streaming	Uni-directional audio/video		
Conversational	Application		
Interactive	Data		
Interactive	Control		
Background	Others		

IMS Charging Architecture

Offline Charging

- Based on trigger conditions, such as beginning and end of IMS sessions
- CDF is the central point in offline charging system
- DIAMETER Accounting Requests (ACRs) sent to CDF via Rf interface
- CGF is needed to consolidate data from (possibly) multiple CDFs
- Message Sequence Chart

Offline Charging Functions

Charging Triggering Function (CTF): Monitors SIP signalling Detects trigger conditions Extracts data from SIP signalling & assembles charging data Sends charging data to CDF Charging Data Function (CDF):

- Constructs CDRs
- Delivers CDRs to CGF

Offline Charging Functions

Charging Gateway Function (CGF): Correlatation, consolidation, filtering functions & addition of operator-specific info CDR error handling & storage **Processing of CDRs** Delivery of CDRs to billing system Billing System:

91

- Creates the actual bill

Online Charging

- Direct Debiting:
 - IMS entity sends request to OCS which finds correct tariff & checks subscriber's credit (known as " Immediate Event Charging" in 3GPP terminology)
- Unit Reservation:
 - OCS reserves an amount from the subscriber's account which is consolidated at regular intervals (3GPP: ⁹² Session Charging")

Correlation of Charging Data

- IMS Charging Identifier (ICID)
- GPRS Charging Identifier (GCID)
 - Allows charging correlation between IMS & IP-CAN

Distribution of Charging Data

- COPS: Common Open Policy Service
- COPS-PR: Common Open Policy
 Service Usage for Policy PRovisioning
- Message Sequence Example – Part1
 - Part2

User Profile

1. A. B. B. B. B.

User (Agent) Profile

- Contains at least 1 PrUID
- Contains at least 1 Service Profile
- May contain more than 1 PrUID
- See example file [UserProfile.htm]

Service Profile

- Sent from HSS to S-CSCF in SAA (Server Assignment Answer) & PPR (Push-Profile-Request)
- Carried in 1 DIAMETER AVP as an XML document
- Consists of 3 parts:
 - Public ID
 - Core network service authorisation (e.g. Permitted SDP parameters)
 - Initial Filter Criteria

Initial Filter Criteria

- Triggers onward routing of SIP message to Application Server
- Contains <u>Trigger Points</u>
 - Absence of a trigger point can be used for unconditional routing to Application Server
- Trigger Point contains one or more Service Point Triggers

Service Point Trigger

- Request URI (identifies a target resource)
- SIP Method (e.g. INVITE, MESSAGE)
- SIP Header
- Session Case
 - Originating, Terminating or Terminating-Unregistered
- Session Description
 - Can be used to match against SDP fields⁹⁹

Example of Initial Filter Criteria

Triggers for All Users

Del RequestURI	Method	Header	Value	Session Case	Application Server URI
□ *	INVITE	Accept-Contact	+g.poc.talkburst	ORIGINATING	sip:164.48.178.152:5080;1r
□ *	PUBLISH	Event	poc-settings	TERMINATING	sip:164.48.178.152:5080;1r
□ *	SUBSCRIBE	Event	conference	ORIGINATING	sip:164.48.178.152:5080;lr
□ *	MESSAGE	Accept-Contact	+g.poc.talkburst	TERMINATING	sip:164.48.178.152:5080;lr
□ *	MESSAGE	Accept-Contact	+g.poc.groupad	ORIGINATING	sip:164.48.178.152:5080;lr
□ *	SUBSCRIBE	Event	presence.winfo	TERMINATING	sip:164.48.178.152:5080;lr
□ *	SUBSCRIBE	Event	presence	TERMINATING	sip:164.48.178.152:5080;1r
□ *	PUBLISH	Event	presence	TERMINATING	sip:164.48.178.152:5080;1r
□ *	SUBSCRIBE	Event	presence	ORIGINATING	sip:164.48.178.152:5080;lr
Delete					

CS Interworking

- Control Plane Interworking: MGCF
- User Plane Interworking: IMS-MGW
 IMS → CS

MGCF converts between ISUP & SIP

 \Box CS \rightarrow IMS

E.164 number is routed to MGCF MGCF converts E.164-formatted number₁₀₁ to a SIP URI format

01.25

Compression

 Support of SIP compression between the the UE & P-CSCF is <u>mandatory</u>

IPv4 $\leftarrow \rightarrow$ Ipv6 Interworking

 The next few slides describe some of the issues and solutions for interworking between IP version 4 and IP version 6

Application Level Gateway (ALG)

- Translates IP addresses <u>WITHIN</u> SIP messages
- Advantages:

Allows interworking between IPv4 and IPv6

- Also allows interworking with LANs behind NAT translators
- Disadvantages:
 - Can present security issues
 - Resource intensive

Dual Stack Operation

- System whereby dual stack hosts are utilised
- Advantages:

Minimises need for ALGs

- Disadvantages:
 - Needs to support both 'A' & 'AAAA' DNS records for IPv4 & IPv6 respectively

Tunnelling

 IPv6 packet is fully encapsulated within an IPv6 packet

IMS Security

- IMS security <u>re-uses</u> UMTS AKA parameters:
 - K
 - RAND
 - AUTN
 - SQN (Sequence Number)
 - AUTS (Synchronisation token generated by ISIM upon detection of sync failure)
 - RES
 - CK
 - IK
Security Domains

I-CSCF

109

I-CSCF

Security Domains

- IKE: Internet Key Exchange
- ISAKMP: Internet Security Association Key Management Protocol
- IPsec: IP Security
- ESP: Encapsulation Security Payload
- When defining Internet Security Domains, Confidentiality, Data Integrity & Authentication are mandatory features
- Security Protocols:
 - ESP, 3DES, MDS & SHA-1

Authentication & Security Agreement

- Authentication is based on the AKA protocol
- UE & P-CSCF exchange lists of supported security mechanisms. Highest commonly supported one is then used
- "Replay" is a feature used to prevent tampering of security agreement during transit ("bidding-down attack"):
 - [Reponse contains same suggested security parameters as the original request]
- Allows extendability whereby new security mechanisms can be added later

Confidentiality & Integrity Protection

- Mandatory in IMS access
- Ipsec
- AKA session keys are used as keys for ESP security associations
- IK is used as the Authentication Key
- CK is the derived Ciphering Key

IMS Presence

- Mechanism to publish a user's availability to other interested and authorised parties
- SIP has been extended with a <u>"presence</u>" event package
 - SIP PUBLISH
 - SIP NOTIFY
- Presentity:

Entity providing information about its presence (to an Application Server)

Watcher:

Entity requesting information on a Presentity

113

Presentity can set authorisation levels (using XCAP)

"winfo" Event Package

- Allows a user to subscribe to information regarding their "watchers"
 Successful subscription to presence
 Successful presence publication
 - Note: Subscription can also be to a <u>Resource List</u>

Messaging

 Messaging Types: Immediate (SIP Message)

 Can also be sent to a <u>List URL</u> on an AS
 Session-based

- Can include other media types in addition to text
- Uses "Message Session Relay Protocol" (MSRP)
- Emulation of IRC (multi-party session)

Conferencing

- A Conferencing Server, after a SIP INVITE, can create a new instance of a conference & assign it a URI
- URI can then be globally published
- A SIP Event Package "conference" is used for notification of changes regarding participants
- A SIP SUBSCRIBE request can then be sent to the conference URI

Inviting Users to the Conference

- Method 1: <u>REFER</u> request sent to server <u>Refer-To</u> header contains conference URI
 Method 2:
 - REFER is sent to Conference URI & User URI is included in Refer-To header
 - Causes the 'focal point' to generate an INVITE request for the invited user

Example

Referring a user to a conference
Subscribing to a conference

 NOTIFY is a notification carrying the conference state at that point in time

Group Management

- Example: "Buddy List"
- Enables group data to be stored in the network
- Synchronises multiple devices holding the group data

Access Control List

 Mechanism to restrict contact and only allow contact from members of a specific group

XDM

- XML Document Management
- XCAP (XML Configuration Access Protocol) is the OMA protocol used to manipulate and access XML documents between client & server
- XML schemas have been defined by the OMA (see file UserProfile.htm for example)

Aggregation of Group Data

- Allows single SUBSCRIBE to deal with multiple resources
- URI points to a list of other URIs
- Uses "<u>Resource List Server</u>" (RLS)
- Tag "<u>eventlist</u>" is used

Resource List Server

Resource Lists

 The <u>Ut</u> interface is used to manipulate resource lists

IMS Registration Example

Registration across Visitor PLMN

Message sequence chart Part 1
Message sequence chart Part 2

Transport Layer Protocols Used by SIP

- Default: UDP
- Greater than 1300 bytes: TCP

Headers

Via

An element adds its SIP Address to this header so that responses to the request are routed back to it

Route

Set to the SIP address of the next hop

Service-Route

Used by the S-CSCF to give the UE routing information to be used from that point onwards

Path

Used by the P-CSCF to store its address in an initial REGISTER request to ensure it remains in the routing path for future <u>terminating</u> requests

Record-Route

 Used by CSCFs to remain in the routing path for future <u>originating</u> requests

Examples: Register Request from UE to P-CSCF

REGISTER sip:registrar.homel.net SIP/2.0

Via: SIP/2.0/UDP
[5555::aaa:bbb:ccc:ddd];comp=sigcomp;branch=z9hG4bKnashds7

Max-Forwards: 70

P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=234151D0FCE11

From: <sip:user1_public1@home1.net>;tag=4fa3

To: <sip:user1_public1@home1.net>

Contact: <sip:[5555::aaa:bbb:ccc:ddd];comp=sigcomp>;expires=600000

Call-ID: apb03a0s09dkjdfglkj49111

Authorization: Digest username="userl_private@homel.net", realm="registrar.homel.net", nonce="",

uri="sip:registrar.homel.net", response=""

Security-Client: ipsec-3gpp; alg=hmac-sha-1-96; spi-c=23456789; spis=12345678; port-c=2468; ports=

1357

Require: sec-agree

Proxy-Require: sec-agree

CSeq: 1 REGISTER

Supported: path

Content-Length: 0

Examples: Register Request from P-CSCF to I-CSCF

```
REGISTER sip:registrar.homel.net SIP/2.0
Via: SIP/2.0/UDP pcscfl.visitedl.net;branch=z9hG4bK240f34.1, SIP/2.0/UDP
[5555::aaa:bbb:ccc:ddd];comp=sigcomp;branch=z9hG4bKnashds7
Max-Forwards: 69
P-Access-Network-Info:
Path: <sip:term@pcscf1.visited1.net;lr>
Require: path
P-Visited-Network-ID: "Visited Network Number 1"
P-Charging-Vector: icid-value="AyretyU0dm+602IrT5tAFrbHLso=023551024"
From:
To:
Contact:
Call-ID:
Authorization: Digest username="user1_private@home1.net",
realm="registrar.homel.net", nonce="",
uri="sip:registrar.homel.net", response="", integrity-protected="no"
CSeq:
Supported:
```

129

Content-Length:

Examples: Register Request from I-CSCF to S-CSCF

```
REGISTER sip:scscfl.homel.net SIP/2.0
Via: SIP/2.0/UDP icscf1_p.home1.net;branch=z9hG4bK351g45.1, SIP/2.0/UDP
pcscfl.visitedl.net;branch=z9hG4bK240f34.1, SIP/2.0/UDP
[5555::aaa:bbb:ccc:ddd];comp=sigcomp;branch=z9hG4bKnashds7
Max-Forwards: 68
P-Access-Network-Info:
Path:
Require:
P-Visited-Network-TD:
P-Charging-Vector:
From:
To:
Contact:
Call-ID:
Authorization:
CSeq:
Supported:
Content-Length:
```

Unauthorised Response from S-CSCF to I-CSCF

SIP/2.0 401 Unauthorized

Via: SIP/2.0/UDP icscfl_p.homel.net;branch=z9hG4bK351g45.1, SIP/2.0/UDP

pcscfl.visitedl.net;branch=z9hG4bK240f34.1, SIP/2.0/UDP

[5555::aaa:bbb:ccc:ddd];comp=sigcomp;branch=z9hG4bKnashds7

From: <sip:user1_public1@home1.net>;tag=4fa3

To: <sip:user1_public1@home1.net>; tag=5ef4

Call-ID: apb03a0s09dkjdfglkj49111

WWW-Authenticate: Digest realm="registrar.homel.net", nonce=base64(RAND + AUTN + server specific data), algorithm=AKAv1-MD5, ik="00112233445566778899aabbccddeeff",

ck="ffeeddccbbaa11223344556677889900"

CSeq: 1 REGISTER

Content-Length: 0

Unauthorised Response from P-CSCF to UE

SIP/2.0 401 Unauthorized

Via: SIP/2.0/UDP

[5555::aaa:bbb:ccc:ddd];comp=sigcomp;branch=z9hG4bKnashds7

From:

To:

Call-ID:

WWW-Authenticate: Digest realm="registrar.homel.net", nonce=base64(RAND + AUTN + server specific data), algorithm=AKAv1-MD5

Security-Server: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; spic=98765432; spi-s=87654321; port-c=8642;

port-s=7531

CSeq:

Content-Length:

2nd Register Request from UE

REGISTER sip:registrar.homel.net SIP/2.0

Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7
Max-Forwards: 70

P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=234151D0FCE11

From: <sip:user1_public1@home1.net>;tag=4fa3

To: <sip:user1_public1@home1.net>

Contact: <sip:[5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp>;expires=600000

Call-ID: apb03a0s09dkjdfglkj49111

Authorization: Digest username="user1_private@home1.net", realm="registrar.home1.net",

nonce=base64(RAND + AUTN + server specific data), algorithm=AKAv1-MD5,

uri="sip:registrar.homel.net", response="6629fae49393a05397450978507c4ef1"

Security-Client: ipsec-3gpp; alg=hmac-sha-1-96; spi-c=23456789; spi-s=12345678; port-c=2468; ports=

1357

Security-Verify: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; spi-c=98765432; spi-s=87654321; port-c=8642;

port-s=7531

Require: sec-agree

Proxy-Require: sec-agree

CSeq: 2 REGISTER

Supported: path

Authentication

- 3GPP AKA paremeters are mapped to HTTP Digest Authentication
- Algorithm value "<u>AKAv1-MDS</u>" distinguishes 3GPP AKA mechanism from other HTTP digest mechanisms
- PrUID is used by the S-CSCF to obtain the correct authentication vector
- <u>Security Associations</u> are established between UE & P-CSCF

Security Associations

Characterised by:

Protected client ports

Protected server ports

- Ports are used as part of the address in SIP headers
- Default unprotected ports are used if protected ports have not been supplied
- When re-authentication takes place, UE & P-CSCF only change their protected <u>client</u> ports
- Server ports remain the same (otherwise, contact data would change, requiring reauthentication)

TCP

- Response is routed to the <u>same</u> port that the request was received from
- Due to the connection-oriented nature of TCP (with TCP, connection is setup in advance and that connection is then re-used until the TCP session is terminated)

SIP Security Agreement

- Provides extendability
- Currently only IPsec is used
- List of supported mechanisms in <u>401</u>
 <u>Unauthorised</u> message contains weighted preferences

Security Negotiation Example

REGISTER sip:registrar.homel.net SIP/2.0

Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd];comp=sigcomp;branch=z9hG4bKnashds7

Max-Forwards: 70

P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=234151D0FCE11

From: <sip:user1_public1@home1.net>;tag=4fa3

To: <sip:user1_public1@home1.net>

Contact: <sip:[5555::aaa:bbb:ccc:ddd];comp=sigcomp>;expires=600000

Call-ID: apb03a0s09dkjdfglkj49111

Authorization: Digest username="userl_private@homel.net", realm="registrar.homel.net", nonce="",

uri="sip:registrar.homel.net", response=""

Security-Client: ipsec-3gpp; alg=hmac-sha-1-96; spi-c=23456789; spi-s=12345678;
port-c=2468; ports=

1357

Require: sec-agree

Proxy-Require: sec-agree

CSeq: 1 REGISTER

Supported: path

Content-Length: 0

Security Negotiation Example

SIP/2.0 401 Unauthorized

Via: SIP/2.0/UDP

[5555::aaa:bbb:ccc:ddd];comp=sigcomp;branch=z9hG4bKnashds7

From:

То:

Call-ID:

WWW-Authenticate: Digest realm="registrar.homel.net", nonce=base64(RAND + AUTN + server specific data), algorithm=AKAv1-MD5

Security-Server: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; spi-c=98765432; spi-s=87654321; port-c=8642;

port-s=7531

CSeq:

Content-Length:

Compression

- Mandatory support but <u>NOT</u> mandatory use
- "comp" added to headers to indicate support

Compression Header Example

REGISTER sip:registrar.homel.net SIP/2.0

Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]; comp=sigcomp; branch=z9hG4bKnashds7

Max-Forwards: 70

P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=234151D0FCE11

From: <sip:user1_public1@home1.net>;tag=4fa3

To: <sip:user1_public1@home1.net>

Contact: <sip:[5555::aaa:bbb:ccc:ddd];comp=sigcomp>;expires=600000

Call-ID: apb03a0s09dkjdfglkj49111

Authorization: Digest username="userl_private@homel.net", realm="registrar.homel.net", nonce="",

uri="sip:registrar.homel.net", response=""

Security-Client: ipsec-3gpp; alg=hmac-sha-1-96; spi-c=23456789; spi-s=12345678; port-c=2468; ports=

1357

Require: sec-agree

Proxy-Require: sec-agree

CSeq: 1 REGISTER

Supported: path

Content-Length: 0

User IDs: Private

REGISTER sip:registrar.homel.net SIP/2.0

Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd];comp=sigcomp;branch=z9hG4bKnashds7

Max-Forwards: 70

P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=234151D0FCE11

From: <sip:user1_public1@home1.net>;tag=4fa3

To: <sip:user1_public1@home1.net>

Contact: <sip:[5555::aaa:bbb:ccc:ddd];comp=sigcomp>;expires=600000

Call-ID: apb03a0s09dkjdfglkj49111

Authorization: Digest username="user1_private@home1.net", realm="registrar.home1.net" nonce="",

uri="sip:registrar.homel.net", response=""

Security-Client: ipsec-3gpp; alg=hmac-sha-1-96; spi-c=23456789; spi-s=12345678; port-c=2468; ports=

1357

Require: sec-agree

Proxy-Require: sec-agree

CSeq: 1 REGISTER

Supported: path

Content-Length: 0

User IDs: Public

REGISTER sip:registrar.homel.net SIP/2.0

Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd];comp=sigcomp;branch=z9hG4bKnashds7

Max-Forwards: 70

P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=234151D0FCE11

From: <sip:user1_public1@home1.net>;tag=4fa3

To: <sip:user1_public1@home1.net>

Contact: <sip:[5555::aaa:bbb:ccc:ddd];comp=sigcomp>;expires=600000

Call-ID: apb03a0s09dkjdfglkj49111

Authorization: Digest username="userl_private@homel.net", realm="registrar.homel.net", nonce="",

uri="sip:registrar.homel.net", response=""

Security-Client: ipsec-3gpp; alg=hmac-sha-1-96; spi-c=23456789; spi-s=12345678; port-c=2468; ports=

1357

Require: sec-agree

Proxy-Require: sec-agree

CSeq: 1 REGISTER

Supported: path

Content-Length: 0

Subscription to Registration State Info

- Event: This field is populated with the value "reg" to specify the use of the registration state package
- Registration state info is returned in an XML form in a NOTIFY message
- Examples follow
SUBSCRIBE **sip:user1_public1@home1.net** SIP/2.0

Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7
Max-Forwards: 70

Route: <sip:pcscfl.visitedl.net:7531;lr;comp=sigcomp>, <sip:orig@scscfl.homel.net;lr>

P-Preferred-Identity: "John Doe" <sip:user1_public1@home1.net>

P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=234151D0FCE11

Privacy: none

From: <sip:user1_public1@home1.net>;tag=31415

To: <sip:user1_public@home1.net>

Call-ID: b89rjhnedlrfjflslj40a222

Require: sec-agree

Proxy-Require: sec-agree

CSeq: 61 SUBSCRIBE

Event: reg

Expires: 600000

Accept: application/reginfo+xml

```
Security-Verify: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; spi-c=98765432; spi-
s=87654321; port-c=8642;
```

port-s=7531

Contact: <sip:[5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp>

Content-Length: 0

145

NOTIFY sip:[5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp SIP/2.0 Via: SIP/2.0/UDP scscfl.homel.net;branch=z9hG4bK332b23.1 Max-Forwards: 70 Route: <sip:pcscf1.home1.net;lr> From: <sip:user1_public1@home1.net>;tag=31415 To: <sip:user1_public1@home1.net>;tag=151170 Call-ID: CSeq: 42 NOTIFY Subscription-State: active; expires=600000 Event: reg Content-Type: application/reginfo+xml Contact: <sip:scscf1.home1.net> Content-Length: (...)

```
<?xml version="1.0"?>
<reginfo xmlns="urn:ietf:params:xml:ns:reginfo" version="1" state="full">
        <registration aor="sip:user1_public1@home1.net" id="a7" state="active">
        <contact id="76" state="active" event="registered">
        <uri>sip:[5555::aaa:bbb:ccc:ddd]</uri>
```

</contact>

```
</registration>
```

```
<registration aor="sip:user1_public2@home1.net" id="a8" state="active">
```

<contact id="77" state="active" event="created">

<uri>sip:[5555::aaa:bbb:ccc:ddd]</uri>

</contact>

```
</registration>
```

```
<registration aor="tel:+358504821437" id="a9" state="active">
```

<contact id="78" state="active" event="created">

<uri>sip:[5555::aaa:bbb:ccc:ddd]</uri>

</contact>

</registration>

</reginfo>

Sending Partial State Change Info

 State parameter is set to "partial" when a NOTIFY message contains only <u>change</u> information

Network Initiated Re-Authentication

```
<?xml version="1.0"?>
```

```
<reginfo xmlns="urn:ietf:params:xml:ns:reginfo" version="1" state="partial">
```

<registration aor="sip:user1_public1@home1.net" id="as9"

state="active">

<contact id="76" state="active" event="shortened"

expires="600">

<uri>sip:[5555::aaa:bbb:ccc:ddd]</uri>

</contact>

</registration>

</reginfo>

De-registration

REGISTER sip:registrar.homel.net SIP/2.0

Via: SIP/2.0/UDP

[5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7

P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=234151D0FCE11

Max-Forwards: 70

From: <sip:user1_public1@home1.net>;tag=4fa3

To: <sip:user1_public1@home1.net>

Contact: <sip:[5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp>;expires=0

Call-ID: apb03a0s09dkjdfglkj49111

Authorization: Digest username="user1_private@home1.net", realm="registrar.home1.net",

nonce=base64(RAND + AUTN + server specific data), algorithm=AKAv1-MD5,

uri="sip:registrar.homel.net", response="6629fae49393a05397450978507c4ef1"

CSeq: 7 REGISTER

Security-Verify: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; spi-c=98765432; spis=87654321; port-c=8642;

port-s=7531

Require: sec-agree

Proxy-Require: sec-agree

Supported: path

Content-Length: 0

150

Early IMS Security

- Where IDs have to be derived from USIM (not ISIM)
- Based on a simplified authentication mechanism involving MSISDN to IP Address checks done by the HSS

Asserted Identities

- P-Asserted-Identity & P-Preferred-Identity
 - Originating P-CSCF replaces '<u>Preferred-</u> ID' with '<u>Asserted-ID</u>'
 - Asserted ID is guaranteed to be a registered & authenticated Public User ID of the originating party
 - S-CSCF can add an additional URI to 'P-Asserted-Identity' (e.g. tel URI)

Privacy Header

- Set to 'ID' to indicate privacy
- If terminating network is not within originating network's trust domain, S-CSCF removes 'P-Asserted-Identity'
- Otherwise, destination P-CSCF is trusted to remove the 'P-Asserted-Identity' in order to retain the requested privacy

P-Called-Party-ID

- Used to store a request URI after the original request URI is replaced by the S-CSCF with the actual IP address of the destination ('From:' & 'To:' can be set arbitrarily)
- Allows terminating party to determine which of their PuUIDs were used in the request

Provisional Responses

- <u>Supported: 100rel</u>' indicates support of <u>reliably</u> <u>sent</u> provisional responses (RFC 3262)
 - Mechanism allowing provisional responses to be sent reliably
 - Support is mandatory for IMS
 - <u>'PRACK'</u> must be sent by receiver of provisional response
 - <u>'Require: 100rel'</u> is used to prompt receiving terminal for PRACK request
 - <u>'RSeq'</u> is used to distinguish between multiple provisional responses
 - Acknowledged provisional response is identified in ¹⁵⁵
 <u>'RAck'</u> header (includes <u>RSeq</u> & <u>CSeq</u> from provisional response)

Resource Reservation

 Resource reservation can happen in the send & receive directions at the originating end and also the send & receive directions at the remote end

Message Sequence Chart

Preconditions

- SDP Preconditions Extension is specified in RFC 3312 ("qos" precondition type)
- Allows UE to delay completion of session establishment until resources have been reserved at both ends

Example: See [SDP_Preconditions_Example.html]

Media Authorisation

- Authorisation Token (*P-Media-*Authorisation):
 - Included in INVITE
 - Included in '183 Session Progress'
 - UE then includes it in Activate PDP Context Request
- Note that any CSCF in the routing path could reject certain media types 158

IMS Session Setup Variations

- IMS Session Setup Without Resource Reservation
- Resource-based IMS Session Setup Without Preconditions:
 - 3GPP Rel 7
 - Optional simplified alternative to preconditions mechanism
 - Uses principle of setting media stream to "inactive" in SDP
 - re-INVITE is sent after resource reservation, now with media stream set to "<u>active</u>"

Communication with non-IMS UEs

IMS UE to non-IMS Terminal
non-IMS Terminal to IMS UE